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Abstract

The nonlinear evolution of a pair of initially linear oblique waves in a

hlgh-Reynolds-number Stokes layer is studied. Attention is focused on times

when disturbances of amplitude e have O(el/3R) growth rates, where R is

the Reynolds number. The development of a pair of oblique waves is then

controlled by nonlinear critical-layer effects (Goldstein & Choi, 1989). Vis-

cous effects axe included by studying the distinguished scaling e = O(R-1).

This leads to a complicated modification of the kernel function in the integro-

differential amplitude equation. When viscosity is not too large, solutions to

the amplitude equation develop a finite-time singularity, indicating that an

explosive growth can be induced by nonlinear effects; we suggest that such

explosive growth can lead to the bursts observed in experiments. Increasing

the importance of viscosity generally delays the occurrence of the finite-time

singularity, and sufficiently large viscosity may lead to the disturbance de-

caying exponentially. For the special case when the streamwise and spanwise

wavenumbers are equal, the solution can evolve into a periodic oscillation. A

link between the unsteady critical-layer approach to hlgh-Reynolds-number

flow instability, and the wave-vortex approach of Hall & Smith (1991), is

identified.



1 Introduction

The flow generated above a sinusoidally oscillating plane wall is one of the simplest

exact unsteady solutions of the Navier-Stokes equations. The instability of such

Stokes layers has been studied as a paradigm of the instability of unsteady (periodic)

flows. Although the flow is unidirectional, a conventional normal-mode approach

to the linear stability of the flow is not possible due to the unsteadiness of the basic

state. Instead yon Kerczek & Davis (1974) and Hall (1978) used Floquet theory to

seek linear disturbances which grow over a complete period. However, they found

that over a full period the flow was stable at all Reynolds number investigated. At

the highest end of the range studied, this included Reynolds numbers for which

instabilities have been observed experimentally (e.g. Merkli & Thomann, 1975).

This paradox has been partly resolved by Tromans (1977) and Cowley (1987)

who argued that at high Reynolds numbers the rapid growth of small high-frequency

disturbances over part of a period can lead to nonlinear effects preventing the linear

decay over a whole period (see also Hall, 1983). This idea was developed by Wu

_z Cowley (1992) (see also Wu, 1991) for two-dimensional disturbances using the

unsteady, or non-equillbrium, critical-layer approach of Hickernell (1984), Churilov

& Shukhman (1988), Goldstein & Leib (1989) and others. They found that following

a linear development stage, nonlinear interactions inside the critical layers could

affect the evolution of disturbances sufficiently to cause the amplitude to :blow-up'

in a finite time. In this paper we extend our analysis of instability and transition

in Stokes layers to three-dimensional disturbances consisting of a pair of oblique

waves.

The importance of three-dimensionality has long been realised in transition. For

instance, in the case of the Tollmien-Schlichting instability of boundary layers, dis-

turbances are predominantly two-dimensional only in carefully controlled exper-

iments, e.g. Schubauer & Skramstad (1947), Nishioka et al. (1975). Even then

two-dimensional disturbances dominate only in the early stages of transition, with

three-dimensional disturbances growing to significance downstream, e.g. Klebanoff

et al. (1962), Kachanov & Levchenko (1984), Kachanov (1987), Saric & Thomas

(1984). For the Stokes layer, three-dimensionality appears to be even more impor-

tant because of the apparent difficulty of introducing, and then observing, artificial

two-dlmensional disturbances; indeed to the best of our knowledge there are as yet

no experiments on Stokes layers with controlled two-dimensional disturbances.

In order to analyse the three-dimensional instability of Stokes layers, there are a

number of theoretical approaches available. Since no finite critical Reynolds number

has yet been identified from a linear Floquet theory analysis, a weakly nonlinear

expansion about the critical Reynolds number in the spirit of Seminara & Hall

(1977) is not possible. Instead we assume that the Reynolds number, R, of the flow

is large so that the frequency of the Stokes layer, w, is much smaller than a typical

O(wR) frequency of the instability waves. Under these conditions, linear instability

waves are quasi-steady and satisfy Rayleigh's equation (Tromans 1977). Figure 1 is

a graph of the neutral curves of a Stokes layer plotted as parametric functions of



time. This is for a flow where the velocity of the boundary y" = 0 is (U0 cos wt*, 0, 0),

(z*,y*,z*) and t* are dimensional Cartesian coordinates and time respectively,

1 1

R = \--_--v-v/ and 5*=

are the Reynolds number and Stokes layer thickness respectively, and v is the vis-

cosity. The streamwise and spanwise wavenubers that are nondimensionalised by

5 °-1 are denoted by a and q-ft. At any time an 'infinite' number of Rayleigh modes

exist, but the most rapidly growing modes can for the most part be found at those

times and for those wavenumbers that he beneath the solid curve A in figure 1;

see Cowley (1987) for further details including the significance of the mode crossing

point marked by X.

In this paper we will not be concerned with how Rayleigh modes are excited in

the Stokes layer, i.e. the receptivity problem. Instead we follow other authors and

assume that as a result of background disturbances Rayleigh modes are introduced

into the flow. For instance, suppose that a pair of oblique neutral modes are intro-

duced into the Stokes layer at a time and with a wavenumber given by the left-hand

branch of one of the curves A or B. As the Stokes-layer's mean profile slowly evolves

this mode will begin to grow exponentially fast. A number of possibilities then arise:

1. First suppose that although small, the initial amplitude is such that nonlinear

effects come in almost immediately near the left-hand branch of either curve

A or B. For definiteness we assume that the disturbance is introduced at the

neutral time 7" = r0 with an amplitude e0. At a time r, where Ar = r-r0 << 1,

a simple linear quasi-steady theory gives the growth rate as /r0RAr and the

wave amplitude, e, as

where dr0 is a known constant (Cowley, 1987). Inviscid arguments similar to

those of Goldstein & Choi (1989) then show that nonlinear effects become

important in an unsteady critical layer when the growth rate is O(c]R). Of

course this scaling only applies if the flow becomes nonlinear while a critical

layer exists, i.e. if Ar << 1, or equivalently if

2log %1 << &oR •

In addition, the initial amplitude e0 must not be too large, otherwise viscous

effects must be included in the critical layer. In particular, if Co is tuned so

that nonlinear effects come into play when e = O(R -1) and Ar = O(R-_),

i.e. if

log eo 1 = O(R_) ,

then the critical layer is unsteady and viscous. This is the scaling that will

be studied here. The recent excellent comparison of Hultgren (1992) between



.

.

experiments and a theory based on similar assumptions suggests that theoret-

ical results so obtained may have a wider range of validity than might first be

thought in view of our specific choice of distinguished scaling. We delay until

later a discussion of the 'very viscous' case that occurs when the flow becomes

nonlinear for Ar << R-_, i.e. when log %1 << R§ (see §4.2 _ §4.4).

Next we suppose that the initial amplitude of the disturbance is sufficiently

small so that the modes evolve linearly until they approach the right-hand

branch of curve A, 1 say at r = r0 again. Then, as above, nonlinear ef-

fects can be accounted for by an unsteady, viscous, critical-layer analysis if

R-½ << IArj << 1 (see §4.4 for a brief discussion of the very viscous case
1

=

The third alternative is that for disturbances of a given wavenumber, nonlinear

effects become significant when the growth rate of the modes is O(R), i.e. at

a time far away from the neutral curves A and B. A fully nonlinear theory

then seems necessary, and we do not consider this possibility further here.

However, we note that there are some asymptotic theories that modify the

mean flow, so effectively changing the position of the neutral curves, e.g. the

wave-vortex interaction theory of Hall & Smith (1991). The latter theory

assumes that there is a weakly nonlinear, high-frequency, neutral wave (e.g.

a Rayleigh neutral mode) whose evolution on a 'slow' timescale nonlinearly

modifies the basic state by an order one amount. However, in order for this

interesting theory to be applicable, it is necessary for the flow to be able to

evolve to the weakly nonlinear neutral wave in the first place. It turns out that

the viscous generalisation of Goldstein & Choi's (1989, 1990) work is related to

this question, and provides a link between two of the current high-Reynolds-

number stability theories (see §4.4).

A main concern of this paper will thus be with the nonlinear effects associated

with unsteady, viscous critical layers. Specifically we shall seek a possible mechanism

for the bursting phenomenon observed in experiments (e.g. see Merkli & Thomann

(1975), Hino et al. (1976, 1983)). We shall assume that the disturbance consists of

a pair oblique waves because the 'quadratic interaction' of such waves produces a

vortex flow, and we note that a significant vortex structure has been observed by

Hino et aI. (1983).

There have been two main strands in the critical-layer theory of nonlinear flow

stability (see the reviews by Stewartson (1981) and Maslowe (1986) for overviews

of critical-layer theory and its applications). One strand has consisted of directly

seeking nonlinear neutral-wave solutions, but without giving detailed consideration

to whether the flow could evolve to these equilibrium states, e.g. Benney & Bergeron

1The left-hand branch of such modes is on curve A for wavenumbers above point X of figure 1,

and on curve B otherwise (Cowley, 1987).
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(1969), Smith & Bodonyi (1982a, b), Bodonyi et aI. (1983), Gajjar & Cole (1989)

and Gajjar (1990) (see Gajjar & Smith (1985) for an analysis of the stability of

such neutral states). In the second strand, the evolution of a linear wave is fol-

lowed into the nonlinear regime by introducing a slow time (temporal instability)

or equivalently a 'slow' lengthscale (spatial instability), e.g. Churilov & Shukhman

(1987a, 1988), Goldsteln, Durbln & Lelb (1987). We take the second approach here,

and as is appropriate for Stokes layers, we adopt a temporal instability viewpoint.

However, there are close analogies between the temporal instability of Stokes layers

and the spatial instability of shear layers and (compressible) boundary layers. This

allows us both to draw on previous work and to extend it (see Appendix B).

The instability modes we consider have a wavelength comparable with the thick-

ness of the Stokes layer. In the case of two-dimensional modes, the scalings and

nature of the nonlinear analysis depend crucially on whether the neutral modes

have a regular or (logarithmically) singular critical layer. In the former case, which

is so on most of the left-hand branch of curve A, a strongly nonlinear crltical-layer

analysis is necessary - cf. Churilov & Shukhman (1987a), Goldstein, Durbin & Leib

(1987), Goldsteln & Leib (1988), Leib & Goldstein (1989), Goldstein & Hultgren

(1989) and Hultgren (1992) (for other examples of this type of critical layer see the

work of Goldstein & Wundrow (1990) and Shukhman (1989)). However, on the rest

of curve A, and all of curve B, there are two or more singular critical layers. Close

to these curves it is found that for a given growth rate, nonlinear effects are felt

at smaller disturbance amplitudes than if the critical layers had been regular; as

a result a weakly nonlinear analysis is possible. However, the amplitude equation

is not a Stuart-Watson-Landau equation unless viscous effects are large; instead an

integro-differential equation is recovered (Hickernell (1984), Churilov & Shukhman

(1988), Shukhman (1991), Wu (1991), Wu & Cowley (1992)).

In the case of three-dimensional disturbances, Benney (1961) observed that an

nearly neutral Raylelgh mode has a pole singularity in the streamwise velocity at the

critical layer. At first sight this suggests that a different scaling is necessary in order

to follow the nonlinear evolution of three-dimensional modes. Nevertheless, in the

case of a single oblique mode in a (compressible) shear layer, a Squire transformation

enables the weakly nonlinear problem to be reduced to one in which the scalings

are essentially those for a two-dimensional singular critical layer (Goldstein & Leib

1989, Leib 1991). This is not possible in the case of a pair of oblique modes.

The nonlinear spatial evolution of a pair of oblique waves in a free shear layer

has been studied by Goldstein & Choi (1989, 1990) (henceforth referred to as GC).

They showed that because of the pole singularity, nonlinear effects must be included

when the linear growth rate is O(e_R). Our temporal analysis of the development

of a pair of oblique waves closely follows the spatial analysis of GC, although we

additionally allow the critical layer(s) to occur away from inflection points. Even

though such a generalisation leads to a completely different critical-layer structure

for two-dimensional disturbances, it does not affect the critical layer dynamics in the

three-dimensional case if the spanwise wavenumber/3 >> e_ (Wu, 1992a). In addition

we incorporate viscous effects so that the critical layers involved are unsteady and



viscousin nature.
We arethus interestedin the evolution of a pair of high-frequency oblique modes

when nonlinear effects become important near a neutral curve, i.e. either soon after

the modes become unstable or just before they stabilise. As explained in detail by

GC, Wu (1991) and Wu _ Cowley (1992), it is appropriate to concentrate on times

close to
1

T = r0 + eivl ,

for some suitable rl = 0(1), i.e. times at which the linear growth rate is O(e_R).

Therefore we introduce the time scales

1 ,

tl = _ciRr, (1.1)

and

t= RT (1.2)

to account for the _slow' nonlinear growth/decay of the disturbance, and the 'fast'

carrier wave frequency of the disturbance, respectively.

The basic flow U" evolves on the very slow time scale T, and it turns out to be

sufficient to express its profile at time r as a Taylor series about the neutral time T0:

0(y,T) = 0(y,To) + A&(y, T0)T:+ ....

Hereafter all quantities associated with the basic flow will be evaluated at T0 unless

otherwise stated.

In order to maintain maximum generality, we wish to force viscous diffusion terms

to appear at leading-order in the critical-layer equations. An elementary balance

of the unsteady, u_, and viscous, u_, terms in the critical layer of width e] (see

(2.30)), shows that we require

R -1 = Ae , (1.3)

where the parameter A is introduced to reflect the importance of viscosity. It will

be assumed to be of order one in §2 and §3. The highly viscous case corresponding

to )_ being asymptotically large will be discussed in §4.2 and §4.4.

The overall evolution of a three-dimensional disturbance is summarised in figure

2 for the case when the flow goes nonlinear near the right-hand branch of curve

A. As illustrated, the disturbance is initially linear and grows exponentially until

its growth rate decreases to O(e_R) when r: = O(1). At this stage, nonlinear

interactions inside the critical layers control the evolution. We wish to emphasise

that there are four times scales illustrated in this figure:

1. The very slow time scale, r, over which the Stokes layer evolves;

2. The slow time scale, rl, over which the growth rate evolves;

3. The faster time scale, tl, over which the disturbance grows;

4. The fast time scale, t, over which the disturbance oscillates.



We note that although our analysisis basedon being closeto either the left or
right hand branchesof the neutral curve, it is straightforward to generaliseit to
wavenumberscloseto the apex of curveA in figure 1 (cf. Hickernell, 1984).

The paper is organisedas follows. In §2we construct asymptotic perturbation
expansionsin the %uter' regionawayfrom the critical layers. The limiting forms of
thesesolutionsnear the critical layersare then determined;as usual thesecontain
unknown _jumps'acrossthe critical layers.A solvability condition is alsodeducedfor
an inhomogeneousRayleigh equation. In §3, we analysethe unsteady,viscousand
weakly nonlinear flow within the critical layers. By matching the inner and outer
solutions the unknown jumps are evaluated. Then by combining the solvability
condition with these jumps, we derive the amplitude equation which is a main
result of this paper. The amplitude equation is studiedin §4,both analytically and
numerically. In particular, a finite-time singularity structure is identified as in GC,
and confirmed by numerical solution. In addition, exponentially decayingsolutions
are found under certain conditions. The viscous limit is discussedand a llnk is
establishedwith the wave-vortex interaction work of Hall & Smith (1991). Finally,
in §5,wesummariseour main results, and discussthe implications of this study. In
appendix B, we deducethe amplitude equation for free shearlayers by combining
the presentresultswith thoseof GC.

2 Outer Expansion

We take the flow to be described by Cartesian coordinates (x*, y*, z*) -- S*(x, y, z),

where z* is parallel to the direction of oscillation of the plate, y* is normal to the

plate and z* is the spanwise direction. We non-dimensionalise time with w -I, i.e.

r = wt*, and write the velocity as Uo(U, V, W). Then the basic Stokes-layer solution

for flow over an oscillating plate is

(v, v, w) : (u, v, w) -- (cos(r - 0,0).

We denote the perturbed flow by

(u,v,w)=(O+u,v,w).

2.1 Asymptotic Solutions Near Critical Levels

Outside the critical layers, the unsteady flow is basically linear and inviscld. It

is governed, to the order of approximation required in this study, by the inviscid

equations
Ou av Ow

CO--_+ Oyy + cO---_= 0, (2.1)

00u COl] COP (2.2)2R-1 + Oz + v coy - coz '



2R-10_ + O.0v _ Op (2.3)
cOx cOy '

cOw O. cOw cOp (2.4)
2R-10-r-v+ _- Oz"

The elimination of pressure yields:

- cO cOy cOw cOO"cOw(2R-' + U_)(-g;z N ) OyO_ - O, (2.5)

and

(2R_,O+ O.O)V,v - cOy- U_ _--_x=0. (2.6)

On introducing the multlple-tlme scales referred to above, the time derivative needs

to be transformed according to

cO _R 0_+_ __1 _ CO + , CO + cO
o,- ot 2R_ot, c_-g_n o_ "

The velocity (u, v, w) and the pressure p of the disturbance are expanded as follows:

4

u = eul + eiu2 +... , (2.7)

' (2.8)v = evl + e_v2-t- ... ,
4

w = ewl + eiw2 +... , (2.9)
4 5

p = epl + e_p2 + e_pa... , (2.10)

The 'early time' linear solution is just a normal mode, so we seek solutions of the

form

V 1 : A(tl)5,(y)cos_zE + c.c., (2.11)

where the function A(tl) is the amplitude of the disturbance,

E = exp(io_x - i0(t)), (2.12)

and

dO lc_c(ro) + 1)t_e½f_(r0) + .... (2.13)
dt 2

For simplicity we have assumed that the two oblique waves are of equal amplitude. In

principle it is straightforward to extend the analysis to unequal amplitudes; however

the asymmetry in the amplitudes complicates the algebra, especially in the viscous

case. Note that as in Wu & Cowley (1992), the dependence on the slow time scales r

and r_ is parametric and will not be written out explicitly. The function Vx satisfies

Rayleigh's equation

(O. _ c)(D 2 _ (_2)_, _ O.yy'Vl _- O, (2.14)

where

a = (_' + _)½

8



The boundary conditions are that _1= 0 on y = 0, and _1 _ 0 as y _ o0.

We let r/= V - Y_, where y_ is the j-th critical level at which 0 = c. Then as

r/_ -4-0, fil has the following asymptotic behaviour

+ bf[¢b + pie, log ]_I], (2.15)vl "_ aj Ca +

where
1 2

ea--r/+_pjT] +... , and eb= l+qjT] 2+ ....

The function v2 takes the following form

v2 = V2(y,tl)Ecos_z + _0,2)cos2flz + c.c + ... , (2.16)

_(0.2) 2flz, has had to bewhere a relatively large longitudinal-vortex component, v2 cos

included in order to match to the inner solution (see §3). The function O_ is the

deviation of the eigenfunction from its neutral state, and satisfies the inhomogeneous

Rayleigh equation

[n'-(a2+ oU_Y-Yc )]v2 = (ia)-l{[-dA-(iaU'vl)A]dtl (U: - c)2_f_ _- zc_V_Yrvi A }@1"U-c (2.17)

The asymptotic behaviour of _2 as y ---* y_ is

,--, -bfrj log 1_71+ (_=r_ + bJ=_A_log I_1+...

+c_¢, + d_[¢b+ pjCalog I_1], (2.18)

where

PJ = --_0_ , (2.19)
Up

1 _fyyy Vyy-2

qj : 2(_2+2 Vy ---_
(2.20)

_]uu dA (iaU.r_)A] (2.21)
= -5[[

A.Cr. Cr. 

+(_dA iaU_.rxA) UuUuYu - -U2uu}
dt, U 3 (2.22)

Recall that all the basic-flow quantities are evaluated at time r0 and at the critical

level y_. The jumps (a + - a_-), etc., will be determined by analyzing the critical

layers in §3.

From the continuity equation, we can write

wx = A_lEslnflz + c.c. ,



where _1 satisfiesthe equation

U..
+ =

O---y- U--C

This has the solution

_1 = _-1 sin 8 (_0_ c_1 - _l,v ) • (2.23)

where

The velocity ul has the form

sin 0 = fl/_ .

Ul ---- A_IE cos/Yz + "u_°'2)(y, _1) cOS 2_z 3 I- c.c., (2.24)

where fil is obtained from the continuity equation as

"Ul = --(io0 -1 {[_U---_Y c'Vl -- _dl,y] sin 2 e + vl,u} • (2.25)

Note that in order for ul to be able to match with the inner solution (see §3), a

spanwise-dependent mean flow, _°'2)(y, tl)cos 2_z, has to be included at leading

order (see also GC). As will be shown later, this mean flow is driven by a stream-

wise sllp velocity across the critical layer, which itself is generated by a nonlinear

interaction inside the critical layer. Although the mean flow is large in the sense

that it has the same magnitude as the fundamental waves, it has no back effect

on the critical-layer dynamics. Its dependence on tl can be viewed as forcing the

longitudinal vortex represented by v_0,2) and _0,2).

Similarly, we write the leading-order pressure perturbation as

p_ = A(tl)_Ecos_z + c.c. ,

where

ZO_ COS -- --pl --1 (0

As y _ y¢a, the asymptotic solutions of pl, ul,wl become

(2.26)

Pl "" i(2-1_CosOb_: "_-''" , (2.27)

fil _ -(ia) -lsin 20b_71-1 +... , (2.28)

z01 _ _-1 sin Ob_] -1 -4- .... (2.29)

Note that the singularity in ul is a simple pole rather than the logarithmic branch

point characteristic of a two-dimensional (singular) disturbance. As GC observed, it

is this difference that results in the faster nonlinear evolutionary time scale compared

with the corresponding two-dlmensional case.

10



We now introduce an inner variable:

y- 7/ (2.30)-- 1

The outer expansions written in terms of this inner variable are then:

v .._ eb_AEcos_z + e{loge](-b]rj + b_pjAY)Ecosflz

! + A(a_Y b_pjYlog )]Ecosflz+ e, [(-bj rj log ]Y[ + df) + + [Y[

+ e_ log e][(a]rj + b_sj + d_pj)Y + 1Apjb_Y']Ecosflz
Z

+ e_[c_Y + (a_r_ + b_sj + d]pj)Ylog [Y]Ecosflz + c.c +... , (2.31)

u .._ e_(-ia) -1 sin' OAb]Y-1Ecosflz + c.c. + ... , (2.32)

w _ e]a -1 sinOb]Ay-1Ecosfiz + c.c + ... , (2.33)

p .._ e ia-l(f_cosOAbfEcosflz+c.c+ .... (2.34)

2.2 Solvability Condition

By multiplying both sides of (2.17) by vl, integrating from 0 to +oo with respect

to y, and using the asymptotic solutions (2.15) and (2.18), we obtain a solvability

condition for (2.17):

ia-'J_-_ + J2r_A = -_ - b-_c-_)- - a-_)
J

-pj(b+d+-b;d-_) -(ajdj + +-a-_d;)} , (2.35)

where the sum is over all critical layers, and J1 and J2 are constants defined by the

following integrals respectively

J_ = f0 +°° U_ _[dy, (2.36)(0 - _)_

+oo 0_0.,. Oy_ ]_dy. (2.37)= f. [- +
(or_ (o-c)dO

Notably these integrals are singular; the analysis of the critical layers in §3 shows

that they should be interpreted in the sense of Hadamard.

After the jumps (a+-ay), etc., are determined in the next section, the amplitude

equation can be derived from (2.35). The nonlinearity is introduced into the am-

plitude equation through the jumps; thus for the purpose of deriving the amplitude

equation, we only need to consider those parts of the inner solutions contributing

to the jumps. This consideration simplifies the algebra to a certain extent.

11



3 Inner Expansion

Equations (2.31)-(2.34) suggest that the inner expansions within the j-th critical

layer take the following form

u = e]U1 + e]U2 + e_U3+... , (3.1)

v = e]Va + e_V2 + e_Va +... , (3.2)

= ' (3.3)w _]W1 + e_W, + e_W3 +... ,
It

p = e]P1 + e]e2 + e'_Pa +... , (3.4)

where O(e n log el) terms have not been explicitly included. This is because as far

as deriving the amplitude equation is concerned, they are passive in the sense that

they match onto the outer solutions automatically whenever the solutions at O(d _)

match, i.e. matching at O(e" log el) does not yield any additional jump conditions.

However, these terms must be included if a quantitative comparison between theory

and experiment is to be made.

The function Va satisfies the equation

where

0_Vl
Lo Oy 2 - 0 , (3.5)

Lo = Ot---_+ (O_Y + (Lrl) - )_-5_2 "

The solution which matches the outer expansion is

¼ = A(tl)Ecos_z + c.c.,

where A = bjA, and b+ = bf = bj, i.e. the jump (b + - b_-) is zero.

The expansion of the y-momentum equation gives

01"1
--0,OY

and so the appropriate solution is

P1 = ia-lOu cos OAE cosflz + c.c..

(3.6)

(3.7)

(3.8)

(3.9)

The function W1 satisfies
OP1

LoW1= --5-;

We let Wx = I)dlE sin/3z + c.c., then W satisfies

L¢01)#,= ion,sinocoscA,

(3.10)

(3.11)

where

L(o,,) 0 0 2
Ot_ + nia(_f_Y + O.rl)- A Oy 2 • (3.12)
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Equation (3.11) canbe solvedusing Fourier transformsto yield the solution

_V_= _Gsin0cos0_Vo(°),
where

¢¢(o") = fo +_ C A(tl-_)e-"_'-_nt d_

and
1 2-_

fl = a(Gy + _r.r,) , s, = _Aa U,_ •

Similarly, the leading-order streamwise velocity U1 can be written as

UI= _IE cos_z + c.c..

It followsfrom the continuityequation that

& = -G sin_0_Vo(°).
At O(e]), V_ satisfies

0 [0Sll O&,]
L oV2,y y = L i V1 + _ _ + -_z '

where

1-2 1 _x _rlO:_ _ 0il = -{(_U_,_Y + (I_.riY + -_fJ._rr_) + A }-_ + _Oz

and Sn, $31 are Reynolds stresses defined by

ou_ ogl v, ou1w1
Sn - + -- + ,

Ox OY Oz

ou1w, o_w, ow?
SaI - + _ + --

8x OY Oz

Sn and Sal can be rewritten as

= ¢(o,o) o(o _) q(2,o)E2 _(2,2)._2
Sil '_11 -4-011' COS2/3Z + _'11 _ + b'n /_ cos 2/3z + c.c. ,

= ¢(2,2)_2 sin 2/3z + c.c.&, s?,")sin2_z+_, ._
After some calculation, we find that

1 -2

_'nq(°'°) = _iaU_ sin 2 O.4"FV (i)

s(o,2) liao: sin2 O_.Wo(I) ,11

1 -2
_'11¢(='°)-- _ic_U_ sin =0[fiA_o O) + 2sin 2 0 fiz(°hEd°)l,,o,,o , ,

S(2,=) _iaO_ sin2 Oii I_V(I) ,11

"31q(0'2) = _/3U_1-2 COS2 0[A*_,r(l) _11_2sin 2 0],_0(0)1)¢'O(0)]

S(2,2) i - 2 &_F_(1)_ : _f_u_ cos'

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)
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From inspection of (3.21), (3.22) and the right-hand side of (3.17), we conclude that
V2 has a solution of the form

V2= II2<I)E cosflz + _(°'2) cos 2f_z T _<_'°)E2 +c.c.. (3.29)

The fundamental component _(1) is driven only by the linear forcing term, i.e.

L1V_ = iaLr_fi,. This is exactly the same as in the two-dimensional case (see e.g.

Wu & Cowley, 1992). By analogy, we obtain the jump conditions

a + - a 7 = 7rip_b_Sgn(Ov), (3.30)

d+ - d-f = -_rirjbjSgn(_fv). (3.31)

Substituting (3.23)-(3.28)into (3.17), we find that the functions _(o,2)and _'2(2'°)

satisfy

o{-_ - ,_ } _!_ = -iSZ sin' O[A.*T2V(2) + 4 sin' Ol_g(°)T'VoOl] , (3.32)

L 2)O(''°) i,_ 3 sin' 0[Al)Vo (2) + 4sin' Odz(°)T_'(1)l (3.33).X r2,YY = frO frO J ,

respectively, where we have put

S ----- OtSl/.

Inserting (3.14) into (3.32) and (3.33), and integrating these equations, we find the
solutions

_ _.+oo 1.+oo

I72('}_) =-iSasin20L Jo

r+oo r+oo

t72('_) : i*asin'OJo J0

where we have defined

 7)A'(tx-rl).A(ta-rl--5)e-medSdrl ,

(3.34)

y).?i(tl- TI).4(tl- Tl- )e-m( +2n)d dzl ,

(3.3S)

fO _= I(°)(_,_7)[_ + 4sin 2 8 e-2"¢'-a'_¢_d(] , (3.36)

= I(1)((,T/)[_2 + 4sin 2 0 fo'7(_ + 2()e2"¢'+3"_¢_d(] , (3.37)

I(°)(_,_7) : e -°'(_'+3*%) , (3.38)

I0)((,_/) = e-s'(_a+a_2r/+6¢_/_+4r/,) • (3.39)

In simplifying V2(,_:_) into the present compact form, we have dropped a purely imag-

inary part; from (3.29) this does not alter the physical velocity. A similar procedure

will be followed on solving for 1_(°,2) later on.
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F

It follows from (3.34) that as Y ---* 4-oo

(W,_)+ co) ~ +s_sin'e_fSfo°e-2"':l_iItl- rl)]_d(drl

+{order-one 'no-jump' terms} + o(1).

We conclude that a longitudinal vortex component must be included in the O(e_-)

outer expansion of v so that a match with 1_'_(°'2) can be achieved.

The function U2 satisfies

LoU2y =-_]_V_ + FI(Y) O0WI

where

and

cO2U_ (9 _ cOWs (3.40)
-- - F2(Y) O--ffff-Y 0-IjS_' + _ (gz '

FI(Y) = U_Y + _ry¢Vl ,

1- 2 1- 2
F_(Y) = 7u_Y + O_:-ly + _:-1.

(3.41)

(3.42)

The solution has the form

U2 = gr_l)E cos f_z+ U_°'°)+ U_°'2) cos2flz+_]_ 2'°)E2 +U (2'2)E2 cos2flz+c.c.. (3.43)

In order to derive the amplitude equation, we need only the mean-flow distortions

_o,o) and gr_°'2). These satisfy the following equations respectively

[(9" . (92 lfr(o,o) = _ ._a sin 2 0A*i)do (2) (3.44)Or1 - " O-Y-_j_2,r 1-a-12

8 _x (92 1T]'(0'2) _____.S(0,2 ) _

[_ -.,V¢-_,,.._,,._ (gy 11 -u_f_,(o:) , (3.45)

where S_°'2) is defined by (3.24). The solutions are

8_?_r O, : -Xot-ls3sin20_o+°°_oT°°_2I(°'(_,,)A*(_l-,)A(_l-,-_)e-'"_d_dl_ ,2

(3.46)

(3.47)

l a-1_z sin 2Ofo+7o+_I(°,2)( _, y )ji* (tl - zl)._( tl - 71-_ )e-me d_ dzl2

where we have put

I(°,2)(_,r/) = I(°)(_,_?)[_2+2_rl+4sin20fo'72(rl-()e-2"'_'-a°'_(2d(]. (3.48)

Integrating /._o_2) once with respect to Y, we find that as Y --* -t-oo

r+oo /,1"/

(0_ °'2) + c.c) ~ TSa -13_sin'0rj0 Jo (_ - ()e-_":lA(tx - ri)l_df drl

+{order-one 'no-jump' terms} + o(1). (3.49)
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This is in fact a streamwiseslip velocity generatedby nonlinear interactions in-
side the critical layers. The outer expansionfor u must match to this; hence the

leading-order outer expansion for u, (2.24), must contain a component representing

a spanwise-dependent mean flow.

The spanwise velocity W2 satisfies the following equation

0P2
LoW_- F2(Y) v_--:-"" Sal, (3.50)

Oz OX

where F2 is defined by (3.42). The solution W2 has the form

W2 = I)V(1)E sin _z + 1_(°'2) sin 2_z + I/V(2'2)E 2 sin 2flz + c.c.. (3.51)

Since at next order we are only interested in the interaction that generates the

fundamental, l)V2(1) does not need to be worked out. Moreover, we find that as far

as deriving the amplitude equation is concerned, it is sufficient to solve just for the

mean component l_ (°'2). It follows from the continuity equation that

= _(28)_1 (3.52)

and hence from (3.52) and (3.34) that as Y ---, 4-oo

(I)V (°'2) + c.c) _ 4sin 40fl-aY-2fo+_foOe-2"l¢_lA(tl - 71)12d_drl + o(Y-2) . (3.53)

An important point to note is that all the spanwise velocity components generated

by the nonlinear interactions are bounded as Y _ +o¢. This is in contrast to the

case of a purely viscous critical layer where unbounded growth of these components

can occur (see e.g. Hall & Smith, 1991). This difference arises because the inclusion

of unsteadiness in our critical layers means that as Y _ 4-oo the balance is between

the unsteady inertial term and the nonlinear forcing terms. In a steady viscous

critical layer the balance is between the viscous diffusion term and the nonlinear

forcing terms. For instance, in the case of 1)¢'(0,2)the balance is between 1_(_ 2) (in

our notation) and a nonlinear forcing which decays like y-2 as Y _ -t-c¢. Therefore

1_(°,2) grows like 'Y + log Y'. In a wave-vortex interaction, this unbounded growth

is one of the reasons why small-amplitude three-dimensional disturbances are able

to generate order-one mean-flow distortions (Hall & Smith, 1991).

The unbounded growth of a mean-flow distortion away from a viscous critical

layer has been noted in other stability problems, e.g. for two-dimensional distur-

bances in stratified shear flows (Churilov & Shukhman, 1987b). However, often the

evolution of the disturbance is sufficiently rapid that a linear diffusion layer is estab-

lished between the critical layer and the outer region to eliminates this growth (see

also Brown & Stewartson (1978), Haynes & Cowley (1986) and §4.4). In the nonlin-

ear wave-vortex interaction (Rayleigh) model of Hall & Smith (1991), the diffusion

layer merges with the outer region because the amplitude evolution is sufficiently

slow - in our notation Hall & Smith (1991) effectively have two time scales, namely
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the time t to describe the rapid oscillation of the disturbance, and the time r to

describe both the evolution of the basic flow and the growth of the disturbance.

The relationship of the present work to the wave-vortex interaction approach will

be examined in §4.4.

We now proceed to derive the amplitude equation. For this purpose, it is suffi-

cient to seek the solution for V3 only. This term satisfies

0o 0Lo½,Yy = L1V2 + L_V_ + _-_[ Sx2 + _zS321 + ... , (3.54)

where

03
L2 = -[-_Uuuy + U_._rl + + 6 OzOY 2

0

0 01[0, o_-[b-_ + (o_y + _rl) as 0_2+ b-_] , (3.55)

the Reynolds stresses $12 and $32 are defined by

0
(2UIU2) ÷ 0 _ _z 'S12 - Ox --_-_(U_ 2 + U2V1) + __ (U1W_ + U2W_) (3.56)

0
(ua w_ + u_ w1) + oSa2 - Ox -O-_(W1V2 + W2V1)+ (2W_W2), (3.57)

and for brevity only those terms that contribute to the jumps across the critical

layers are explicitly included.

At this order it is only necessary to find the fundamental component, i.e.

½ = _E cos _z + c.e. + ....

Similarly we write

0$1,_+ _-_z$32 = ._/E cos ¢_z+ c.c. + ... ,

with the non-fundamental components being omitted.

We note that the relevant part of the linear forcing term, i.e. (/;1_ +/;2V1), is

the same as F(O(Y,t_)E in Wu & Cowley (1992). Thus the solution forced by it,

denoted here by I_'3(0E, has the same asymptotic behaviour

¢¢'(,_ .._ (a+pj + 2qjbj + lp_bj)Y + (a+rj + pjd + + sjbj)log Igl
z

1 - + +
+{:k-_riSng(V_)(aj rj + pjdj + sjbj) + ...} . (3.58)

It proves convenient to write the nonlinear forcing term 117Ias a sum of the four

terms, namely

M = _tl + _t_+ _t_+ _t0,
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where

- itT*(O,O) 1/afiLfT,(O,2) 1 tzt_i_l,(0,2 )
IVII = ,aAU2,y -{- _ _2,Y + _"2,Y , (3.59)

11"I2 = iaUa,y_ *(°'2)- 2a2[]10; (°'2) , (3.60)

_/3 = 2iaO;,y_ (2'°) , (3.61)

1 iaj_(o,2 ) 1 ,aj.{_(o,2) iaj,_r_2,o)Mo = i,_;_O?.?)+ _ 2.; + V "'Y +

lct3*fr(2'2) -lt_A. "d'z(2'') + iaO1,y_ (°'')- 2a'grxgr_°'_) (3.62)
2 "_ ,-,2 + 2 _" ,,2

The nonlinear forcing terms are split-up in this way in order to aid the calculation

of the solutions and their asymptotic behaviour.

We now let Va(j) denote the solution driven by/l:/j (j = 0,1,2,3). Then

(3.63)

where

]_,(1)5"U) =/'9/./,y (3.64)0 '_3,YY

and _0) is defined by (3.12) In addition we denote the Fourier transform of _.U)
•. 3,YY

by Fj(k):

['J(]¢) = /+5 V3'yye-IIeY dY "

To obtain the jump we need to evaluate {_(Jy)(+o¢) - V(_(-c¢)}, or equivalently

r (o)= (3.65)

A calculation shows that ]y(0) makes no contribution to the jump.

The forcing /17/1represents the Reynolds stress generated by the interaction be-

tween the vertical velocity of the fundamental wave and the induced spanwise flow.

Using (3.65), and solving (3.64) with j = 1, we find that

r+oor+oo ~ . .

= $*j°sin20Jo ]o K_)(_'77)ft(t_-_)A(t_-77-_)/l*(tt-2_-_l)d_d_7'
(3.66)

where we have put

jo = _1_1-1,

= f0n[_2 + 2_(_7-- ()]e-2s'('-ast _¢_ de} (3.67)_O)(_,r/) f;(°)(_, r/){2_a + _2_7+ 2 sin20

and

k(°)((,_/) = e -''(2_'+3_'n) . (3.68)
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The forcing 37/2 represents the interaction between the streamwise velocity of the

fundamental wave and the induced spanwise flow. In order to overcome a technical

difficulty in evaluating the asymptotic form of 1)(_) we write

V(_y = Q2(Y, tl) - ia_r_l gq.gygr;(°,2) . (3.69)

Substituting this and (3.60)into (3.64), we find that Q2(Y, tl) satisfies

L_I)Q2 : iQ2(Y, tl) , (3.70)

where

Since

L(I)UI.y = -iaUuU1 , (3.71)

we obtain, by differentiating with respect to Y, that

L_) gr_.yy = - 2iaaugr_,v . (3.72)

From use of (3.72) and the complex conjugate of (3.45), we find that

fir2 iagq,r¢..(o,_)., _¢T;T.(o,_).,. _.-a¢. ¢_.(o,_) • _-1¢_ 0.(0,2)._ I/2, Y --/,0¢ UIU2, Y --ZZAaLIy Lll,yyyLl2, Y --ZOiLly U1,YYO11 • (3.73)

Then after solving for Q_(Y, t_) from (3.70) using Fourier transforms, we obtain

= 25'josin46fo+7o+c_fi(_2)((,rl)_i(tl-()).(tl-rl-()._t*(t1-2(-rl)d(dr], (3.74)

where we have put

= {_(o)((,,) fo_[((2r/÷3i)__(_÷2__2()]e-a,,_¢'d(

+4sin28/R(0)(_, _ 2 '_ -71)f° d(e -3''_¢ _ (v-71-()[l+2AS'(_¢,-()(21 e-°'(''_'+ae_'')dv

÷ .g(l'(_, _)f0_(e-3't ("°7)(2__)(fo_V-()[1 ÷ 2_$2(_-()(_-()2]e-al [2v'T3("°7)V']dv)

and

(3.75)

_.(x)(_, 7/) = e-''[¢_+'_+(¢+n)'] (3.76)

19



The forcing ._ra is the Reynolds stress generated by the interaction between the

streamwise velocity of the 3-D fundamental and the '2-D harmonic' generated by

the interaction of the fundamentals. On writing

^ - fr, ¢A2, o) (3.77): Q3(Y,tl)+ u;lviyy.2,y ,
and substituting this and (3.6o) into (3.64), it can be shown that Qa satisfies

L(1)Qa =/_r3(Y, t,) , (3.78)

where

Observing that

= -- "."_ J"O k"I,YY v2,Y ] "

L(2)o(")- +0 v2,Y --

and using the complex conjugate of equation (3.72), we find that

Na = -2ic_(/; l_'U{,YY°lx'''(_'°)+ 2A(/;l(/:,yyyl/(_ , (3.79)

where 2(2'°) is defined by (3.25). After solving for Qa from (3.78), it can be shown"11

that

rTOor+oo

= 4'_4j°sin40Jo Jo k(z)(L_)A(tl-5)A(t_-rl-5)A'(t:-25-_)d£drl, (3.80)

where

t_(_)(_,,)

k(1)(_,,]) {f_,]C[X + 2A3:(_ +, + {)2(_- ¢)1110(_, ,/, {)d¢

+ 4 sin2Ofo_d( IIo(_, ,7, (_I(_-v)[i+2AS2(_+rlq_)2(,_-(_)]e°'('_"-_"_')dv)

(3.81)

and

II0(_, T], _) = e -'l(4<,+6_('+grK'+6er/(+6"'() • (3.82)

By matching Vs.Y with the outer expansion we flnd that

+ c7 _.y(+c¢)- _,y(-(x)) (3.83)cj -- =

Combining (3.64), (3.58), (3.66), (3.74), (3.80), together with (3.67), (3.75) and

(3.81), we conclude that

c_ - c;
= 7riSgn(bry)(a+rj + pjd + + sjbj)

+_310_t_sin2°Jo Jo Kj(_,,71_)A(tl-_)A(t,-_-,1)A'(t,-2_-,)d_d,_ ,
(3.84)
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where

= R¢o)(_,_)(2_3+ _2_)

+R(°)(_'r]) fo [((2zi+3()-_(_+2z]+2¢)]e-a"e¢'d¢

+2R(1)(L _) fo_ _([1 + 6si(_-0(_+_+¢)2]Ho(_, _, ¢)d(

+/_(')(_,,/)fo_[(,7+¢)(,7+30-(_-_)(_-_+2¢)]e-3"(_+')(_'_)¢d¢}

"Jl-8 sin40 K(°)(_, 7])fo d/E-3sl_c: fo ("o--?']--¢)[1 + 6,-q1(_ --

q-2k(1)(_, r]) fo_ d¢IIo(_, r], ¢) fo¢(¢ - v)[1 4- 6s1(_ - ¢)(_ + r] 4- ¢)2]eSK'vs+anV')dv

+ k(')(e,,)fo' _¢e-_"('+')(=_)'fo_(_- ¢)[1+6,,(__ ¢)(, +¢)']e-',t'o'_(_)"ld_}

(3.85)

Here the suffix j refers to the j-th critical layer, and the dependence on _ is through

81 (see (3.15));/_-(0),/_(1) and H0 are defined by (3.68), (3.76) and (3.82) respectively.

Although the kernel Kj(_, zll_ ) is algebraically complicated, nevertheless it simplifies

to the following form when ._ = 0:

K(_, 71) = (2_a + _271) - 2 sin2_(2_a - _/2) - 4 sin40(_v] + _/2) . (3.86)

This is just the kernel obtained for the inviscid case (GC; Wu, 1991).

We note that both (a + - aj-) and (d + - dj-) correspond to the classical -i-_r phase

shift in the outer expansion, while (c -+J-cj-) is modified by nonlinearity. It is through
this modification that nonlinear effects control the evolution of the disturbance.

3.1 The Amplitude Evolution Equation

By inserting the jumps (3.30), (3.31) and (3.84) into (2.35), we obtain the amplitude

equation

dt---_=g°raA + so so _gjKj(_'rll'_)A(t_-_)A(t_-_-rl)A*(tl-2_-rl)d_drl '

(3.87)

where the sum is over all critical layers; e.g. for most of the right-hand branch of

curve A of figure 1 there are two. The kernel Kj(_, _11)_) is defined by (3.85), while

go = fo/f , gj = fj/f , (3.88)

21



and
fj = -Tra s sin2Ob_lbj]2[O_t 3 . (3.89)

The constants f and f0 are the same as in the two-dimensional case (Wu & Cowley,

1992), namely

- ub
bi_" ----- ] (3.90)f = iot -1 _¢bj[2i--_-=-aj + _uj ---=--=- + + J_ ,

lUll _ u_lu_l _ u_

fo = _ _2_ribj_a.• I iu l , -

while ,/1 and ,/2 are defined by (2.36) and (2.37) respectively. The coefficients g¢

are plotted against the wavenumber & = (a s + f12)½ in figures 3a and 3b for the

right-hand branch of curve A. The plot of the scaled coefficient (go sec 0) against

is the same as shown in figure 3 of Wu & Cowley (1992) (provided that a there is

replaced by &). For our purposes here it is sufficient to recall that the real part of

go is always negative.

In the inviscid limit, A = 0, the amplitude equation becomes

dA e+oo i.+oo

dr----1= gorlA + g Jo Jo K(L,i)A(tl-_)A(tl-_-_)A*(h-2_-_)d_dT1, (3.92)

where the kernel K(_,T/)is defined by (3.86),

g = _gi, (3.93)
J

and the sum is over all critical layers. Note that although in the present problem

0"_(yo) # 0, the nonlinear kernel K(_,7/) is exactly the same as that of GC. This

is because nonlinear interactions inside the critical layers are only associated with

the pole singularity in u and w, compared with which, the logarithmic branch-point

singularity associated with U_y(y_) # 0 is much weaker. In appendix B we show that

the present results are directly applicable to the spatial evolution of a disturbance

in a free shear layer when viscous effects are important.

In the spirit of Stewartson & Stuart (1972), Churilov & Shukhman (1988), GC

and others, we require solutions to (3.87) to match with exponentially growing linear

modes as tl _ -0% i.e.

A ---* Aoe g°_'_t' as tl _ -c¢ , (3.94)

Following GC, the parameters A0 and vl can be scaled out by introducing the
rescaled variables

A : A_-_(T°+_°'"")lgl½/(go,'r,) _ , (3.95)

= go_rltl - to , (3.96)

= .X/(go, v_) z , (3.97)
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where go, and g01 are the real and imaginary parts of go respectively, and _'0 and t-0

are chosen so that:

- t-o + i_?o = log[Aolgl_/(go'rl) s] • (3.98)

The evolution equation and the asymptotic behaviour then become

__ __ e+oot+o_
dfi, _ ft + Jo Jo _. vjK_(_'_l'_l2t(E-_lfl(E-_-fla'(E-2_-fld_d(dE

3

(3.99)

j] _ e_ as _ _ -oo , (3.100)

where vj = gj/]g], and we have written X in the kernel as X.

If there is only one critical layer, then [vii _ [v[ = 1. Thus in this case the

amplitude equation depends only on A, _ and arg v. In this sense, the rescaling

(3.95)-(3.97) achieves the same purpose as Shukhman's (1991) introduction of a

'logarithmic time'.

4 Study of the Amplitude Equation

4.1 Finite-Time Singularity. Structure

A singularity structure for the amplitude equation (3.92), i.e. the invlscid limit of

(3.87), was proposed by GC in their study of the spatial evolution of disturbances in

a free shear layer. They showed numerically that solutions developed a singularity

at a finite distance downstream, or in terms of our temporal evolution problem, the

solutions blew up within a finite time. The singularity proposed was

a0 (4.1)"- as {--* t, ,
(t,--t-)3+'_

where (rand ao are realand complex constants respectively.Although this finite-

time singularity was identified for the inviscid case, substitution of (4.1) into (3.99)

shows that it is unaltered at leading order by viscous effects. We obtain

(3 + io-) -- _vjDolaol 2 , (4.2)
J

where

=/o+°/yDo K(_,,l)[(l+_)(l+_+y)]-(_)(l+2_+Tl)-(3-_)d_d_l , (4.3)

and [a0] and a can be solved from (4.2). The singularity time t, can be determined

numerically in the same way as described in Wu & Cowley (1992).
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4.2 Viscous Limit

Possibly the most surprising result of this paper is that the amplitude equation

(3.87), or equivalently (3.99), does not admit an equilibrium solution. This is a

significant difference from the two-dimensional viscous case (e.g. Goldstein & Leib

1989; Wu & Cowley, 1992). The reason for this is that the integral of the kernel

+°°f °°

does not exist.

In order to shed light on this observation, we now turn to examining the am-

plitude equation under the very viscous limit A _ +oo. This corresponds to the

situation where the viscosity is relatively large, or the disturbance is relatively weak

(see (1.3)). In Appendix A it is shown that in this limit, the amplitude equation

(3.87) can be reduced to

1 dA
_-'im

d[x
= gorlA + A-19A fo +°° IA(t-1- r/)12dT/+ O(A-_ A s) , (4.4)

where tl is defined in (A.7). The complex constant 9 is

2] sin20[ 1 _ 2 sin,_O]l.,(1= V 5) gjzj-" '
J

(4.5)

where the sum is again over all critical layers. The parameter A can be scaled from

the leading order equation by the transformation

' _ ' " (4.6)A=AsA, and rl =A-_rl ,

to obtain

dE1 g0_17, + 9)_ +ooIA(E1 _)12d_ (4.7)

We note that in this limit the critical layers are of width O(A_e}), i.e. O(R-_-), and

are thus viscous to leading order. However, sandwiching each critical layer there are

thick diffusion layers of width O(A] c}) where unsteadiness effects are still important

at leading order (cf. Brown & Stewartson, 1978).

A remarkable feature of (4.7) is that the nonlinear term is non-local so that the

amplitude equation is not of Stuart-Watson-Landau typefl In fact the nonlinear

effect comes only from the interaction between the fundamental and the induced

mean-flow distortion - the higher harmonics play no role at leading order. This is

in contrast to the case when A = O(1), where both the mean-flow distortion and the

higher harmonics contribute. Note also that when 0 = _, the coefficient _ is zero

2The authors are grateful to Prof. S.N. Brown for discussions without which the authors would
not have realised this point.
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sothat the nonlinear term vanishes.The same behaviour also occurs in the inviscid

case (GO); however, when 0 < A < c_,/(j((,_/]A) is non-zero even when 8 4

Although a numerical investigation of (3.99) seems necessary, we note that (4.7)

can solved analytically. First we scale out various constants by a transformation

similar to (3.95)-(3.96):

B = Ae-'(_'°+_°'"r')lgrl_/(90r_a), (4.8)
[, = 90,_,t-a-- [_0, (4.9)

where 7_1o and _'1o are chosen so that

- t',0 + i7_o = log[A0lgr l½/(g0._',)], (4.10)

and .q, is the real part of 9, i.e.

gr = -9-2]sin_0[ 1 _ 2sin20]r(_)Re{y_a#_f_}
J

(4.11)

The evolution equation (4.7), and the asymptotic behaviour, then become

dB
- B + g-_B f+oo IB([, - _)12d_, (4.12)

dt_ I_rl 4O

and

B _ exp([x) as [_ _ -oo. (4.13)

By multiplying (4.12) by B*, and then taking the complex conjugate, it is straight-
forward to show that

d_ _ 21BI2 + _IBI_£ ÷°° IB([a - rl)12drl • (4.14)

On solving a differentiated version of (4.14) we obtain

iBiS = 16 exp(2[_) (4.15)
(4 - _ exp(2[, ))'

From (4.15) it is clear that the sign of 9, plays an important role in determining

the terminal behaviour of solutions to (4.7). In particular, the solution develops a

finite-time singularity when gr > 0, but decays exponentially at large times when

._, < 0. Since (4.7) is a limiting form of (3.87), this suggests that when .qr > 0,

solutions to (3.87) or (3.99) will develop a finite-time singularity no matter how

large A is. However, when .qr < 0 it seems likely that solutions will terminate in

a finite-time singularity if A is not too large, but will decay exponentially once )_

exceeds a critical value. Our numerical results demonstrate that this is indeed the

case.
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4.3 Numerical Study of the Amplitude Equation

We have integrated the rescaled amplitude equation (3.99) using a finite-dlfference

method. Two independent schemes have been used as a check: a Milne's (predictor-

corrector) method and an Adams-Moulton (implicit) method. Both schemes have

sixth-order accuracy. The kernel Kj (_, 7/IA) is evaluated numerically using Simpson's
rule.

We assume that A can be approximated by the linear solution e t when _ < -To,

where To is a 'big' positive number; a suitable choice is determined by trial and

error. The integral over the infinite domain D = [0, +_) × [0, +oo) is approximated

by that over a large but finite domain Do = [0, X0] × [0, Y0]. For the viscous case,

the tail over the domain Dx = (D - Do) is neglected. This is justifiable because the

Kj(_, r/lA)A(tl - _)A([I -_ - r/)_4([1 - 2_ - r/) decays exponentially as _ and/or 7/tend

to +oo. Different values of X0 and ]I0 were tried in the program before deciding on

suitably large values; we find that it is sufficient to take X0 = Y0 = t + To. For the

inviscid case, we approximate the tail over D1 analytically using the linear solution.

However, we find that dropping this tail has little effect on our results.

The inviscid version of (3.09) has been studied by GC. Their numerical results

confirm the singularity structure (4.1). Here we integrate the inviscid amplitude

equation using the coefficients calculated for the Stokes layer. Figure 4 shows results

for the wavenumber _ = 1.2 on the right-hand branch of curve A. Four propagation

angles O were investigated: O = 15 ° , 30 ° , 60 ° and 75 ° . For 8 = 15° and 30 ° the

amplitudes exhibit an oscillatory behaviour, indicating a periodic energy exchange

between the disturbance and the basic flow. Similar behaviour has been observed

elsewhere (e.g. see GC and references therein). Local singular solutions are displayed

as dotted lines. They show that a finite-time singularity occurs. Moreover, for

0 60 ° and 75 °, the local singular solutions fit rather well with the corresponding

numerical results over a substantial range of time, even though they were expected

to be yard only near the singularity time. For the inviscid case, we have also worked

out a power-series solution of the form _ a,,e (2'_+1)_. The recursion relation for the

a,, is given in Appendix C. Although this form of solution is valid when [ --* -0%

it is found to have a rather sizeable range of validity when truncated at high order,

say 40-50th order. This provides a check on the numerical results (see also Wu,

1991). For 8 = 60 ° and 70 °, the power-series solutions were able to reproduce the

first oscillatory cycle.

We note that at 0 = 60 °, a resonant triad interaction can occur if the initial

disturbance includes an O(e]) two-dimensional eigenmode with a wavenumber 2a

and a phase velocity c (Goldstein & Lee, 1992; Wu, 1992b). However, in the present

problem this resonance does not occur. This is because such a two-dimensional mode

is not present in our initial disturbance, and when excited by nonlinear quadratic

interactions, it only has a magnitude of O(e 2) - weaker than the required strength

O(e}) for a resonant interaction.

We now move onto the viscous case. As illustrated in figure 5 for 0 = 60 ° and

= 1.2 on the right-hand branch of curve A, we find that increasing the viscosity
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generally delays the occurrence of the singularity. Note that .0r is positive for these

parameter values, so the singularity cannot be eliminated no matter how large

is. Figure 6 shows results for 0 = 30 °, and the same Wavenumber _ = 1.2; the

parameter gr is now negative. As can be seen, viscosity delays the time to singularity

formation if 3_ is not too large. However, once A exceeds a critical value 3 (between

30.0 and 35.0 in this case), the amplitude decays exponentially, i.e. log IA[ --_ -c0t,

or ]A[ ,_ e -c°r, where Co > 0 is a constant. This is significantly different from the

two-dimensional case, where viscosity causes the disturbance to saturate at a finite

amplitude. Although the waves decay exponentially, in appendix D we show that

rather surprisingly the 'slip' velocity, (D.1), generated by accumulated nonlinear

effects grows linearly with time. This is illustrated in figure 7, where we plot a

suitably scaled streamwise velocity jump. It follows that in the outer region the

spanwise-dependent mean flow driven by the slip velocity grows linearly with time,

while the longitudinal vortex equilibriates at a finite amplitude. We conclude that

the distortion has stabilised the basic flow, with the result that the Rayleigh modes

start to decay. We also note that the growing velocity jump can be interpreted

as a growing 'vortex sheet'. This is intriguing since the development of intense

shear layers is one of the characteristic precursors to the formation of small scale

turbulence. This in turn raises the question of the stability of the thin shear layer

to secondary disturbances.

Figure 8 displays results for 0 = 60 ° and & = 0.8 on the right-hand branch of

curve A. For this case .0r is again negative, and viscosity plays a similar role as in

figure 6. It is worth noting that at moderate values of ),, viscosity can induce rather

violent oscillations. However, the oscillations gradually disappear as A increases,

and ultimately the disturbance decays when A is sufficiently large. The calculations

presented here show that both A and the sign of .0r determine the terminal form of the

solution to (3.99). This conclusion is supported by other numerical calculations using

artificial coefficients which we do not report here. However, it is worth observing
4

that because .0r depends on 0, for any given wavenumber _ and sign of _ vj/3_ _ , it is

always possible to find some 0 such that .qr > 0, i.e. such that a finite-time singularity

can occur. In this sense, blow-up is more common than in the two-dimensional case

(cf. Wu & Cowley, 1992).

Of course, once the singularity occurs, our theory ceases to be valid. Neverthe-

less, the finite-time singularity does indicate that an explosive growth is induced by

nonlinear effects, and we suggest that this nonlinear blow-up may be related to the

bursting phenomena observed in experiments (e.g. Merkli & Thomann, 1975; ttino

et al., 1976). Moreover, as GC argue, the present theory does not break down until

the amplitude of the disturbance becomes order one, at which point the flow will be

governed by the Euler equations.

Finally, we examine the special case 0 = 45 °, again taking _ = 1.2 on the right-

hand branch of curve A as an example. This propagation angle is special because

3No attempt has been made to determine the critical value precisely because it is very CPU
intensive to integrate the amplitude equation for ,k close to its critical value.
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in both the inviscid ()_ = 0) and viscous ()_ = +oo) limits, the nonlinear term in the

amplitude equation vanishes. This does not occur, however, when 0 < )_ < +oo. In

figure 9, we depict evolution curves for four values of ,_. The solutions clearly appear

to develop a finite-time singularity. However, as $ is increased the solutions change

significantly. As shown in figure 10, for sufficiently large )_, the solutions can evolve

into a periodic osciUation without tending to a definite limit. In order to demonstrate

that these solutions are not a numerical artifact, results are displayed at two different

resolutions. We note that for )_ = 50.0, the amplitude exhibits a rather 'chaotic'

transient state before relaxing into a periodic oscillation. This 'chaotic' transient

becomes less noticeable, and ultimately disappears, as $ is increased further.

4.4 The Relationship with Wave-Vortex Interactions

A feature of critical-layer analyses is the fact that surprisingly large mean flows

and vortices are generated, e.g. in our analysis a spanwise-dependent mean flow is

generated which is as large as the fundamental disturbance. A feature of the wave-

vortex interaction of Ha_ & Smith (1991) is that small amplitude disturbances can

modify the mean flow by an order one amount. It seems natural to ask whether there

is a link between the two theories, especially since Rayleigh wave-vortexinteractions

also involve critical layers. In particular could a disturbance consisting of a pair of

oblique waves evolve through an 'unsteady' or 'non-equilibrium' critical-layer stage

en route to a wave-vortex interaction? This is of course related to the questions:

1. Can a wave-vortex interaction involving Rayleigh waves be established in the

first place?

2. Are the weakly nonlinear neutral waves in such a wave-vortex interaction

stable?

Before partially addressing at least the first of these questions it is instructive

to determine the range of validity of (4.7). From (1.3) and (4.6) it follows that the

time scale over which the growth-rate evolves, as specified by _1 = O(1), is

r- ro~O(_IR_) , (4.16)

while from (1.1) and (A.7) the time scale over which the disturbance amplitude

evolves, as specified by tl = O(1), is

r ro O(c -2 '- ~ _R-_) . (4.17)

Our theory assumes that these two time scales are distinct. This is no longer the

case if

,-- R-_ , i.e. $ ,- R¼ , (4.18)

since both time scales are then O(R-_). We conclude that when

R-_ << e << R -1 , or equivalently 1 << )_ << R¼ , (4.19)
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the evolution can be described by (4.7). The validity of the full integro-differential

form of the amplitude equation (3.87) is of course restricted only by A << R¼.

From (4.6) the disturbance amplitude corresponding to the scaling (4.18) is

O(A_e), i.e. O(R-]). In terms of the global Reynolds number Re = R _, the distur-

bance amplitude is O(Re-_), which we note is the (corrected) wave amplitude scale

identified by Hall & Smith (1991). While a direct connection with that work is not

possible, we note that as part of a study of weak wave-vortex interactions, Brown,

Brown & Smith (1992) have examined the scaling (4.18). Although they studied an

equivalent spatial stability problem, in terms of our notation they effectively con-

sidered a problem with the three times scales, t = Rv, R]0- and "r. Their amplitude

equation is similar to (4.7), but because the _'1 and [1 time scales have merged, the

coefficient of _ in (4.7) becomes 90/1. Also, as a result of a viscous sub-Stokes layer

adjacent to the wall which makes an O(R-_) correction to the growth rate (e.g.

Cowley, 1987), there is an additional linear term proportional to A.

An important property of the amplitude equation derived by Brown et aL (1992)

is that in one limit it can be reduced to a small amplitude form of the wave-vortex

interaction equations, while in another limit it reduces to (4.7). A mathematical link

between the wave-vortex interaction equations, and the non-equilibrium critical-

layer equations is thus made.

Let us now return to the discussion started in §1 concerning a normal mode of

amplitude e0 introduced at a time on one of the left-hand branches of the neutral

curves. We note:

1. If e0 = O(R-}), then the evolution of the disturbance is described by the

nonlinear equation derived by Brown, Brown & Smith (1992);

2. If e0 = o(R-_), but log eo a << R, the nonlinear evolution of the disturbance is

described by (3.87), or its limiting forms (4.7) and (3.92).

In the second case we have seen either that the disturbance hits a finite-time

singularity, or that the mean flow is stabilised with the result that the disturbance

decays exponentially. In both cases the final behaviour is described by much more

rapid times scales than would be necessary for the flow to evolve to a slowly-varying

wave-vortex interaction. Thus at least for a disturbance consisting of a pair of equal

amplitude oblique waves, it seems that for a broad range of initial amplitudes the

flow does not develop into a wave-vortex interaction. However, note that when

exponential decay sets in near a left-hand neutral curve, we anticipate that the

disturbance will start to grow again over the slow timescale vl as a result of an

increase in the linear coefficient of (4.7). The subsequent nonlinear evolution of

such a disturbance will depend, inter alia, on the form of the critical layer when the

flow becomes nonlinear again.
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5 Discussion and Conclusions

We have derived an integro-differential amplitude equation, i.e. (3.99), that describes

the evolution of a pair of oblique waves in Stokes layers and other inviscidly unstable

shear layers. We have assumed that nonlinear effects become important while the

local growth rate of the disturbances is small (although not too small), and have

extended the previous analysis of GC by including viscosity. We have also relaxed

the condition that the critical layer(s) occur at inflection points, although our results

remain valid if they do (e.g. as is the case for free shear layers). However, we re-

quire that the spanwise wavenumber/3 is not too small; the nonlinearity associated

with the logarithmic branch point singularity is then much weaker than that asso-

ciated with the pole. A scaling argument, similar to that in Wu & Cowley (1992),

shows that this is no longer the case, because the nonlinearity from the simple-pole

singularity is as strong as that from the branch-point singularity, when

/3~

This problem has been considered by (Wu, 1992a), who allows the disturbance

amplitude to be modulated both in the spanwise direction on a scale Z = e_z, and
2

in time on the scale tl = eft.

Numerical solutions of the amplitude equation (3.99) either blow-up in a finite-

time singularity, or decay exponentially at large times. Similar behaviour is found

analytically for the reduced equation (4.7) that describes the amplitude evolution

in the very viscous limit. Equilibrium solutions to the amplitude equations could

not be found, which suggests that nonlinear effects do not render the disturbance

neutral.

A direct comparison with experiment is hard, since we have been unable to find

experiments on Stokes layers studying the evolution of well-controlled initial distur-

bances. Indeed, in most experiments the instabilities are allowed to develop from

background noise. However, in an attempt to relate our theory to such experiments,

let us suppose that instability modes are excited continuously. Then, because there

are well-defined left-hand branches to the neutral curves A and B in figure 1, there

are specific times when new modes with a particular wavenumber can be excited.

Let us assume that these modes are excited as soon as they are 'viable'.

If the initial amplitudes of these disturbances are eztremely small, then their

evolution as the Stokes layer slowly changes can be fully described by linear theory

- eventually the disturbances either equilibrate at a finite amplitude or they decay

on reaching the right-hand branch of a neutral curve (Cowley, 1987). However, if

their initial amplitude is slightly larger, then the evolution of the disturbances can

become nonlinear near the right-hand branch of the neutral curve. Since the most

rapidly growing linear modes are two-dimensional, then on the basis of linear theory,

such disturbances are likely to have the largest amplitudes (but see Goldstein & Lee

(1992) and Wu (1992b) for the possibility of super-exponential growth of oblique

modes when there is a resonant triad of waves). This two-dimensional case has
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been consideredby Wu & Cowley (1992). However,supposethere is a preferential

mechanism for exciting three-dimensional disturbances, e.g. small grooves in the

plate. Then our results show that for moderate size disturbances (a) that for a

range of %bliqueness' angles the disturbances decay as a result of viscous effects,

but (b) for other angles a finite-time singularity arises accompanied by an explosive

increase in wave-amplitude. For slightly larger disturbances viscous effects have no

time to act, and for all obliqueness angles there is an explosive increase in wave-

amplitude.

At even larger levels of background noise a disturbance of given wavelength will

become nonlinear at times well before the right-hand branch of the neutral curve,

and our theory is not applicable. A further increase in the background disturbance

level means that nonlinear effects need to be included at times near the left-hand

branch of the neutral curve. Again, two-dimensional disturbances have the most

rapid linear growth. However, over much of the left-hand branch of curve A, the

two-dimensional critical layer is regular, and so nonlinear effects lead to algebraic

rather than exponential growth (e.g. Gajjar & Smith (1985), Churilov & Shukhman

(1987a), Goldstein & Hultgren (1989)). Therefore, three-dimensional instabilities

are potentially important, although a full analysis would involve testing the stability

of the flow with a two-dimensional, quasi-equilibrium, critical layer to secondary

three-dimensional disturbances. This is an extensive calculation, which we do not

tackle here. Moreover, as Killworth _ Mcintyre (1985) and Haynes (1985) have

observed, the quasl-equilibrium critical layer itself may be unstable to very high

frequency two-dimensional disturbances with wavelengths comparable to the thick-

ness of the critical layer.

Instead we note that when three-dimensional disturbances are preferentially ex-

cited so that their evolution becomes inviscidly nonlinear near a left-hand branch,

explosive growth of the amplitude will again occur for all pairs of oblique modes.

However, if the initial disturbance is sumciently large , then viscous effects mean

that explosive growth can only occur for a range of obliqueness angles. We believe

that this is experimentally significant because it implies that for a relatively large

range of initial disturbances, i.e. e0 -- o(R-]) but log eo 1 << R], there is a spread of

obliqueness angles for which viscous effects cannot prevent explosive growth. This
is so whether or not viscous effects can force two-dimensional disturbances to evolve

into quasi-equilibrium states. For even larger initial disturbances, i.e. e0 = O(R- _),

the amplitude equation is modified to that of Brown et al. (1992).

Our results suggest that experimental observations are likely to depend on the

background level of disturbances. In particular, the lower the background level of

disturbance, the later in the oscillation cycle that nonlinear disturbances should be

observed. For example, Monkewitz _ Bunster (1987) note that 'the first visible finite

amplitude disturbances appear shortly before and around flow reversal at the edge of

the boundary layer'; our theory when applied close to the right-hand branch of curve

A should be relevant in this case. On the other hand, Akhavan et al. (1991a,b) note

that at relatively large Reynolds numbers 'turbulence appeared explosively towards

the end of the acceleration phase'. This is a little earlier that could directly be
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explainedusing our theory applied to the left-hand branch of curve A, but we note

that Akhavan et al. (1991) conducted their experiments on finlte-width Stokes

layers in a pipe, and that their ensemble-averaged velocity profiles differ from the

laminar profiles that we have assumed.

As in GC, an important feature of our results is that nonlinear interactions inside

the critical layers generate in the main part of the flow both a spanwise-dependent

mean flow of the same size as the fundamental wave, and a longitudinal vortex. We

note that a relatively strong spanwlse-dependent mean flow was observed by Hino

et al. (1983) in a finite Stokes layer between two plates. Hino ei al. (1983) also

suggested that the vortex structures and the bursting processes that they observed

in Stokes layers are similar to those observed in turbulent boundary layers. This is

possibly not surprising given (a) that our theory is applicable to any high-Reynolds-

number shear flow that supports Rayleigh waves, and (b) that the large scale coherent

structures in the outer region of a turbulent boundary layer may generate such

shear flows in the wall region. Thus the results obtained here may be applicable

to the understanding of wall-layer phenomena in turbulent boundary layers such as

_streaky' vortices and high-frequency bursts.

In addition we recall that the formation of A-vortlces in boundary-layer tran-

sition has been linked with the secondary instability of Tollmien-Schlichting waves

and longitudinal vortices to high-frequency (Rayleigh) modes, e.g. Betchov (1960),

Greenspan & Benney (1963). Since the Tollmien-Schlichting waves and longitudi-

nal vortices are quasi-two-dimensional in the sense that their wavelengths are much

larger than the thickness of the boundary layer, a slight modification to our analy-

sis should yield an alternative nonlinear approach to describing the 'spike' stage of

transition. Moreover, the generalisation of the analysis to three-dimensional basic

states should also make it possible to extend Hall & Horseman's (1991) linear sec-

ondary instability analysis of G5rtler vortices into the nonlinear regime. We also

note that it is straightforward to extend our analysis to compressible flow. In par-

ticular, essentially the same amplitude evolution equation, i.e. (3.99), is obtained.

Our results are especially applicable to such flows since the most rapidly growing

linear disturbances tend to be three-dimensional.

Another consequence of our work is its relationship to the (Rayleigh) wave-vortex

interaction of Hall & Smith (1991). An implicit assumption in the Hall-Smith theory

is that the weakly nonlinear Rayleigh wave, whose slow evolution forces the order

one change in the mean-flow, is stable. This assumption seems reasonable given,

for instance, that linearly unstable GSrtler vortices can evolve through a weakly

nonlinear stage to a strongly nonlinear stage in which the mean flow is distorted by

an order one amount (Hall, 1991).

Initially we anticipated that our linear disturbances would be able to evolve

through a weakly nonlinear stage near a 'left-hand' neutral curve, before developing

into a wave-vortex interaction at later times (e.g. as a result of saturating into an

equilibrium state). However, we found that the disturbances either evolve to an

_Euler' stage through a finite time singularity (GC), or they decay exponentially.

Similar results have been obtained independently by Brown et al. (1992) for distur-

32



banceswhich becomenonlinear in the IArl = O(R-_) asymptotic regime near a

left-hand neutral curve.

We conclude that for a wide range of initial amplitudes, a pair of oblique modes

do not evolve to a (Rayleigh) wave-vortex interaction, even though such a distur-
bance seems a natural initial condition for such flows. It remains to be checked

that this is still the case for a pair of oblique waves of unequal amplitude. In addi-

tion_ the effect of both streamwise and spanwise modulation of the waves should be

investigated, especially on the form of the finite-time singularity.

The authors would like to thank Prof. J.T. Stuart, Dr. M.E. Goldstein and Prof.

S.N. Brown for helpful discussions.
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A Appendix A

In this appendix, we show that the integro-differential amplitude equation (3.87)

reduces to (4.4) as A _ +oo.

In order to obtain an asymptotic estimate of the nonlinear term, we first split it

into the following sum:

where

+oof+oo
N =_ ,o ,,o KJ(_'Tll_)A(tl-_)A(t'-_-_l)A*(tl-2_-71)d_dTI

= N (°) + N (1) + 2 sin20[N (2) + N (3)] + 8sin4 ON(4) + N(s), (A.1)

N (°) = 2 fo +°° fo+_.fi(°)(_,_)_3A(t_-_)A(t_-_-_)A*(t_-2_-_)d_dy, (A.2)

NO) = _o +°_ fo +°° k(°)(_,Tl)_2qA(tl-_)A(tl-_-rl)A*(tt-2_-rl)d_drl , (A.3)

A(t_-_)A(t_-_-,)A*(t_-2_-rl)d_d, , (A.4)

N(3)

A( tl -_ )A( tl -_ - TI)A* ( t_ - 2_- y)d_dq , (A.5)

A(tl-_)A(t,-_-q)A*(tl- 2_- _l)d_dq , (A.6)

and N (s) denotes the rest of the nonlinear term, i.e. the part associated with the

fourth, fifth, seventh and eighth terms of the rlght-hand side of (3.85).

In order to estimate these integrals as _ _ c¢, it is necessary to make one of the

following change of variables:

Substitution I:

1 --tl= st,,

Substitution II: (A.7) and

=

v=;_ ' (A 7)_1) ,

1

7/= $_ ; (A.8)

1 .

7/= )_-_r/. (A.9)
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The appropriate substitution must be chosenin order that the resulting integrals

are convergent. We find that substitution II converts the nonlinear terms into a

classical cubic form, i.e. the history effects are damped out.

Applying substitution II to N (°) and N (s), and taking the limit A _ +oo, we
h ave

N (°) --, A-}BoAIAI2 , (A.10)

and

N (s) _ A-}CoAIAI2 . (A.11)

However if wewhere Bo and Co are constants defined by convergent integrals.

perform substitution II in NO), the resultant integral diverges. Instead, we integrate

N(1) by parts with respect to 71, and write it in the form:

r+oor+co _t 1N(1)---- (-3s1)-lJo J0 /_(°)(_'r])r]A(t'-_) [A(tl-_-rl)A*(tl-2_-rl)]d_drl

-(3sl)-2f0+_"f0+_-2[e-3"_2'7- lie -2''_' A(tl- _)_tl [A(tx-_-rl)A*(t,-2_-TI)]d_dr I .

(A.12)

We now perform substitution I and take the linfit _ ---, +oo; we obtain

N(_) _-i-8x/3F(_)1A-} (_j)_"-}'A_0 £+_ ½IA(E,_ _)12d0 (A.13)

where/_.i = 1 _-2 j_a U_(yc). Note that substitution I leaves the integral convergent by

virtue of the exponential decay of A as f/_ +c_.

In the case of N(_), we first make the transformation (7/- _) _ 7/to obtain

N (2) = f+°°f+°°f+°°¢e-_,,_,-s,,e(,,+c)-_,,e-s,,ee
do dO ,Io

A( tx -_ )A( ti -_- rl-¢ )A*(t_ - 2_- _l-_ )d_ d_ d7l

+ [2(7/] e - 2.__ - a,_ _ (,7+¢)- 2,_(_ - s,_ _2

A(t_ -_)A(t_ -_ -_ -OA'(t_ - 2_- _ - _')dCd_d_. (A.14)

Performing substitutions II and I into the first and second integrals respectively,

we find that the first term is order )_-}, while the second term is order )_-i. More

precisely,

N(2) = A-_f_ 9 × 2-------_ IA(_a- _)l_dff + O(A-_). (A.15)

In order to estimate N(3) we first integrate by parts to obtain

N (a) =_ fo+_fo+°°e-S,_-s,,_,_SA(tx__)A(t_____l)A*(ta_2___)d_d_l
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+ +_ +_k (°) _ 68 _ 3 2 2

A(tl-_)A(t,-_-_)g*(tl-2_-y)ded(dy . (A.16)

Performing substitution II in the first and third terms, we can show that these two
6 2terms tend to )_-sDoAIA 1 , where Do is a constant defined by a convergent integral.

The second term is similar to N(1); the only difference is that the exponent 581_ 3

now replaces 281_ 3 of N (_) (see (3.68) for the definition of K(°)). We conclude that

as _ _ +oo,

N(_)~ o(_-_). (A.17)

Finally for N(4) we first perform the transformation (7 - v) _ y, and then we

write it in three parts:

(y- ()[1 +6s_(_-()¢2]A(t_-()A(t_-_ + y-v)A'(t_- 2_ + _-v)dv

[_ +6s_(_-_)C(Y+()]A(t_-_)A(t_-_-Y-v)A*(t_-2_-y-v) dv

_?A(t_-_)A(t_-_-y-v)A*(t_-2_-y-v)dv .

(A.18)

By use of substitution II we can show that the first and the second terms tend to

()_-_EoAIAI _) as _ ---* +c_; here E0 is again a constant defined by a convergent

integral. Use of substitution I in the third term shows that it contributes a leading-

order term of order _-_:

' _ r(_)_/o÷_l_(_l-_)l_+o(_-_-). (A.I_)N(4) = -_-_f/_-_ 18 × 2_

Combining (A.15) and (A.19), and using (A.1), (A.10), (A.11), (A.13) and (A.17),

we obtain the final estimate for N:

N ---, )__fl__] 2] sin_0]F(_)A #)l:d_ + _)--_sin_O[1- 2 _0+_[A(_- O(_- . (A._0)

Using (A.20), (3.87) and (3.15) we obtain (4.4).
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B Appendix B

In this appendix we combine our results for the Stokes layer, with those of GC for

a shear layer, to deduce the viscous version of the amplitude evolution equation for

a shear layer.

First, we introduce a viscous parameter ,k by scaling the local Reynolds number

R = 6oA/v in the following way:

R -1 = ,_c . (B.1)

Then the amplitude equation is

1 dA

d$

e+oo e+oo

-A-17tan'OJo Jo k(_,rl[_)A(_,-_)A(_,-_-rl)A*(2-2_-rl)d_drl ,

(B.2)

where the kernel ,_ is defined by (3.85) - the suffix j has been dropped because

there is only one critical layer in a free shear layer. The parameter 81 involved in/(

now should be defined by

(B.3)

Readers should consult GC for the definitions of 5, _'1, Uc etc.. The constants K and

7 are defined by equations (3.70) and (3.71) of GC respectively.
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C Appendix C

As _ ---+ -0% the amplitude equation (3.99) has a solution of the following form:

fI = _ ake (2n+1)_ .
n=O

(c._)

Substituting the above expression into (3.99), equating the coefficients of e(="+t) _,

and setting ao = 1, we obtain the recursion relation

an+l

1 n l

2(n + 1) _ _ a*,,_,aka,_k _ vjQj(k,l,n),
l=o k=O j

n = 0,1,2,..., (c.2)

where

Qj(k,z,,+)= f+_f+°+KA_,,71,_)_-_(_"-'+_)+-_("+"-'+')',,_d,7 . (C.3)
dO dO

For simplicity, we only consider the inviscid limit )_ = O. In this case, we can

integrate Q(k, l, n) analytically to yield

1 { 6(1-2 sin20)Qj(k,z,,_) = i-g (n+k--7_r_)-_-t+2), +

2sin2e(1-2sin'O)

1 - 4 sin'tO

(n + k- I+ 1)2(2n-/+2) a

(C.4)
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D Appendix D

In this appendix, we show that although the wave decays exponentially, the nonlin-

early induced streamwise slip velocity (3.49) actually grows linearly with the time

tl. Without loss of generality, we consider

/,+oo tr/

(D.1)

This is essentially the shear produced by nonlinear interactions inside the critical

layer. By means of the transform (tl - 77) _ r/, we can write AU as the sum of three
terms

where

AU = tlA1 - A_ - A3 ,

A,(,,) = /][ IA(,)i'd,f""
dO

A,(t,) = f][ ,

f.fl tl -r/A3(tl) = 7lIA(_l)12dy [ e-2"'Q dC .
oo dO

Since the integrands in (D.3) are positive, we have that

Similarly we find that

f+oo f0+ooA2<_ _ IA(_)l'd_ (_-2",_'d¢.

and

(D.2)

(D.3)

(D.4)

(D.5)

e-2"Qd_ . (D.6)

(D.7)

[Aa[< f_t, [rlA(r/)12d_ f0e'-" e-2"'Qd(< f-+_ [r/A(r])12d_ A +_ e-2"'<_d(" (D.8)

The estimates (D.6)-(D.8) mean that only the term involving Aa contributes to the

leading order term in (D.1). Moreover, Al(tl) is a monotonically increasing function.

Hence after a little algebra we conclude from (D.6) that as tl _ +c_,

foAl(t,) --, IA(r/)12dz/ e-a"Qd( > 0, (D.9)

and that

AU --+ ntl , (D.10)

where _ = Al(+oo).
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Figure 1.--Sketch of the linear neutral diagram for wave-

numbers _ = (e=2 + 1132)1/2 (from Cowley, 1987). 70 Is a point

on one of the neutral curves. In the analysis we concentrate

on times close to T = 70 + E1/3 T1, where _ Is the magnitude

of the disturbance and _1 is an order one number.

•ri 70 + E1/3 7, 70

O(R-I E1/3)

Unear
__ _.____OoVedaaP___ _ Nonltnear__,Jstage stage - I

Rgure 2.--Evolutlon stages and critical-layer structures (for the case when non-

llneadty becomes Important near the right-hand branch of a neutral curve).

The disturbance Initially grows exponentially according to linear theory. As it

approaches the neutral time 7o, the growth rate become small, and linear
critical layer(s) emerge. When the growth rate has decreased further to

O((1/3), nonlinear interactions Inside the critical layers control the evolution of

the disturbance. The eadler linear, and the subsequent nonlinear evolution

stages, match in the overlapping domain.
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Figure 3.--The real and Imaglnaw parts of the scaled coefficients in the amplitude equation (3.87), where G j = gj/[c,4 sin 2 e]
(]=l,2),andG=G 1 +G 2.
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Figure 4.wLn I _, I vs. the scaled time t'for _z= 1.2 and X = 0 (Invlscld limit): (a) 0 = 15°; (b) 0 = 30°;
(c) 0 = 60_; (d) 0 = 75 °. Solid lines: numerical solutions; dotted lines: local asymptotic solutions (4.1).
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Figure 5.--Ln I._1 vs. the scaled timet'for "_= 1.2 and 0 = 60°: (a) X = O;(b) X = 10; (c) X.= 30; (d) X = 50.
Solid lines: numerical solutions; dotted lines: local asymptotlc solutions (4.1),
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Figure 6.--Ln I AI vs. the scaled time t'for _ = 1.2 and 0 = 30 °. ,%.= 10, 30, 35, 50, 80, and 120. Solid
lines: numerical solutions; dotted lines: local asymptotic solutions (4.1).
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Figure 7.--'Vortex sheet' development: &U vs. the scaled time tfor _ = 1.2 and 0 = 30 °. ;_= 35, 50,80, and
120. Solid lines: numerical solutions; dotted lines: asymptotic slopes.
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Solidlines: numericalsolutions;dotted lines: localasymptotic solutions(4.1).
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Figure 10.--Ln I _, I vs. the scaled time tfor -_ = 1.2 and 0 = 45 °. X = 50, 60, and 100: To display the graph
clearly, the curves for X = 60 and 100 are shifted upwards by three and five units respectively. The
integration time steps for _. = 60 and 100 are 0.05 (solid lines), and 0.1 (dotted lines). The Integration
time steps for ,_ = 50 are 0.025 (solid lines) and 0.05 (dotted lines).
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